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ON SOLVING EXTERNAL BOUNDARY VALUE PROBLEMS OF THE THEORY OF E~STICITY 
USING THE METHOD OF BOUNDARY INTEGRAL EQUATIONS* 

M.I. LAZAREV 

in algorithm is proposed for the method of boundary integral equations forthesecond 
external problem of the theory of elasticity with Poisson's ratio close to or equal 
l/2 for the first external problem. 

The method of boundary integral equations for basic problems of the theory of elasticity 
leads to singular integral equations of the second kind /l/. In the case of the second in- 
ternal and external and, also, in the case of the first internal problem, the spectral prop- 
erties of integral operators enable us to apply the method of successive approximations for 
finding a solution /2/. That method allows to lower the demand for memory volume, in a 
certain meaning to a minimum, as it is necessary to store the approximation on each step, i.e. 
the information amount equal generally to that required for specifying the boundary conditions. 

Below, problems are considered for which the standard course (in the variant of the 
method of potential, i.e. replacing the unknown displacement by a potential) results in in- 
tegral equations that are not equivalent to the input problem. The method proposed here is 
similar to that used in /3/ for solving the external Dirichlet problem for the Laplace equa- 
tion (see also 1411. 

1. Let u (2) = (ul, u2, ug) be the displacement vector of the elastic body D completely fil- 
ling the infinite part of space RS3x with the boundary closed by a smooth surface S. 

Let us determine the differential operator 

The first and second 

L, = A -j- (1 - 20)-l grad div 

basic problems are defined as follows: 

(1.1) 
L,It=O, XED; u (5) = f(s), r Es ( problem 1) 

L,u=O, XED; T,,u&& 
a 

Gi3,jdivI.L +-$-+ allj 
1 

ar 1 Rj= f (problem 2) 
k 

where o and E are, respectively, the Poisson and Young moduli, and n = (?tl, ?tS, fbs) is the 
vector of normal to S. 

The fundamental solution of operator &is the matrix V with components 

V ij = an~(f_ a} [ - L -“:I ‘ij + 
(Ui-rj)(Yj-zj) 

Iz-VI’ 3 (1.2) 

The method of the potential consists of the following substitution of variables: 
for problem 1 the solution is sought in the form of double layer potential 

u (4 - s V’nJ (xv ~11' ‘P (Y) d,S 

for problem 2 it is sought in the form of simple layer potential 

u(x)= S~(X,Y)~(Y)~~~ 
S 

With this substitution the equations in Dare satisfied, since LV x-p)= -26(x, &!)I and 
the boundary conditions yield singular integral equations in cp /l/ (for problem I*) 

3% (4 + S[T,~'(x, &I' 'p (y) dyS = f (21, 5 E s (1.3) 
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for problem 2*) 

z!zcp(") $_ST*,V(I,Y)cp(Y)d,S=f(x), s+z%S Cl.-11 
S 

Thus plus and minus sign denote here that the equations relate to the inner and outer 
problems, respectively, and subscripts z, y indicate that differentiation of the stress 
operator is carried out with respect to these variables. 

The singular integral operators in (1.3) and (1.4) are conjugate in 

where they are continuous. 
Subsequently for definiteness and certain simplicity, the equations and related operators 

on Swill be considered in L,(S). In the presence of corresponding smoothness of boundary 
parts the whole of the expounded is transferred into the H&lder-Lipschitz space, for which it 
is necessary to use certain theorems of /l/. 

Equations (1.3) and (1.4) may be written in the operator form 

T:cp+T*rp=f, +cp+Tcp=f 

From /l/ we have: for some 6 = 6 (S)> 0 we have Z (T)3 -1,X (T) \ {-I} C l-l+ 8, 1 - 61 
and N (I + T) = {qi}l” and -1 belongs to the region of Fredholm properties of operator 
T. Here and subsequently X(s) and N(e) are, respectively, the spectral set and the space 

of zeros of operator in parentheses; qi are linearly independent vectors of rigid displace- 
ment a + [b x 21 (a and b are vector constants). Subsequently, we shall denote by AA the 
space of functions orthogonal in L, (s) to A: IA = {rp: (cp, 9) = 0 V$ E A}. 

2. The singularity in the Lame equation (1.1) as e = 1 - 20 -+O produces difficulties in 
numerical calculations for media with a close to or equal 'i,. To overcome this difficulty 
in problems 1+,2* is not difficult (see /5/, where the existence of the limit of solution of 
problem 2- as e-t0 was also proved). In problem 2- the respective integral equations when 
e = 0 are equations on the spectrum, which hinders the seeking of solution in the form of 

simple layer potential and with small e. 

Let Lo, T,,o be operators acting on the pair (u, P) in the following manner: 

Lo (u; p) = [-$ Au - grad p; div ui 

Consider the problem 

L, (u; p) = 0, z E D-; T,o (u; p) = f, I E S (2.1) 

where D-is the unbounded part of space. 
Problem (2.1) was considered in the investigation of steady Stokes flow of viscous in- 

compressible fluid /6/, although it was not of independent interest there. There u had the 

meaning of velocity, p of pressure, and E/3 was the coefficient of dynamic viscosity. 
Let V,, p be the fundamental solution of operator L,: L, (V,,; P)= (-28 (5, y) I; 0), where 

V,, is the matrix (l-2), for u = '/a we have P = (4n)-'grad 1 .z - y I-1. 
The equalities 

V,=V,+-&V,, divVt=2P (2.2) 

T,=To+eT1 (2.3) 

are valid, and T, is absolutely continuous and T, is a continuous operators. Here and sub- 

sequently the subscript e denotes a quantity that is determined for (I = (1 - e)/2. 

Moreover (see /6/) 

-I,~EE:(T,), 38>0: r, (To)\ {-l,l} c f-1 + 6, I- 61 

N (--I 4 T,) = {n}, N (I + T.*) = {%)?=I 

The substitution 

.(r)=S Vo@.Y) 'p(Y)d,S, p (2) = s B Pk (5, Y) cpk (Y) d,S 
S s k-l 
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reduces problem (2.1) to the Fredholm equation in cp 

--cp + T~'Y = f (2.4) 

which is solvable only under condition fElN(-Z+ T,*), and, consequently, the solution of 
problem (2.1) cannot be represented in the form of simple layer potential. 

The presence of point 1 + O(e) in sepctrum T, makes difficult the solution of Eq.tl.4) 

that corresponds to problem 2- at small E. 
Prior to giving the algorithm whose stability is independent of E, we shall make a few 

remarks. 
lo. If h is a pole of order m of the resolvent of operator T, then the space ZZ where 

T is acting can be represented in the form of a direct sum /7/ 

H = N ((AZ + T)“) @ IN ((-AZ + T*)‘“) (2.5) 

20 
\~ (-1) 1 

Let X,(T,) be the spectrum of T, contraction on iN(Z+T,*), then X,V(T,)= Z (TL) 
which can be verified directly. 

30. Let T,, = T, -(n, .) n. Then I: (T,,)C 2 (To)\ 1, and since n E IN (Z + T,*), we 
have 

XN (To,) c f--1 + 6, 1 - 61, 6 > 0 (2.6) 

Indeed, let 1 E Z (T,,). Then there exist a cp such that Tolq = hq. According to lo rp = c.n + 
T, T E iN (--I t- To*; and To,cp = h cn + ?$. Since theexpansion of (2.5) is unique and T&N 

(--I + To*) CAN (--I + T,*), hence T,T = @. Therefore either 11. 1 < 1, or ?j = c0snt.n and 

T,,cp 4,O. 
. From (2.3) and (2.6) follows the existence of a0 > 0 and independent from E 6, > 0 

such that for E E [O, Eel 

Z (Tel) C I-1 + 60, 1 - 601, 11 Tel I(N = 4 < 1 (2.7) 

5O. Since (I + T,) L, (S) C IN (I + Tea), it f0llows from (2.7) that the operator 

R,=-+[Z +.&AZ+ T,)] 
k-0 

exists and is continuous. Moreover 

II R, - Ro II = 0 (s) (2.8) 

We represent solution of problem 2- in the form (a particular solution for V (I) in 
another form was used in /8/) 

~~(t)=s v,(s,Y) 'pe(y)dyS + c,v@); v(s)= grad 1x0--p 
s 

(2.9) 

where x0 E R3 \ (D U S) is a fixed point. Since for any function FeCS(D) the equality 

LgradF=wgradAF 

is valid, we have Lu, = 0, x E D-. 
We have on S the equation in cFe7 cc 

--me +- T,cp, = f - c,T,v (2.10) 

We assume c, = (% &f)i(n, R,, T,v) (that the denominator is nonzero is proved below). 
The solution of (2.10) is 

me = Rd - [(n, RJ)l(n, R,Tmv)l ReTmu 

Indeed, (F~ is the solution of Eq.(2.10) obtained by the substitution T,-+ T,, and the 
statement follows from the equality (cp,, n)= 0. 

Thus U, from (2.9) is the solution of problem 2-, and the solution of (2.1) is the pair 
(ug. P) 

uo (I) = SBO (It Y) cpo (Y) d,S, P (5) = s i p” (5, Y) ‘PO’ (Y) d,S (2.111 
s 6 k=l 

qo = R,f - [(a, R,f)@, RoT,ov)l RoT,,ov 

which is valid by virtue of 
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div u= A(Ix, - z I-') = 0, .z E D- U S 

By virtue of (2.2), (2.3) and (2.8) we have 11 q8 - ‘p,, (1 = 0 (e), /I u, - u0 Ij = 0 (e). 
It is essential that the action of R, on the function can be calculated using the method 

of successive appro*imations that converges not slower than the geometric progression with an 
exponent independent of e. 

It remains to show that for e close to or equal zero we have (n, RJ,,,v) i: 0. 
Since (n. R,T,Y) = (72, R~T,,u)+O(e), it is sufficient to show that n. ROT,,u)#O. Let us as- 

sume to contrary, then R,T,+J is the solution of equation 
-'PO-~ T,cp, = T,,o 

From this follows that the pair (v;O), as the solution of problem (2.1) with boundary 
conditions f = T,,p can be represented by the simple layer potential of density eo + c0nst.n. 
Since 

s V,(% Y) n(y)d$ = 09 s 2 Pk(6 Y) nk(v)dvS = 0, ZE D- 

S Sk-1 

we have u&) = v (z).p (z) = 0,~ E D-, where u,,(z),p(z) are defined by formulas (2.11) 
The last equality means that mO= c.n, which is impossible, since T,r,v+ 0, z E S. 
Let us briefly consider the case when S contain several components of connectedness. Let, 

for example, S- S1 U S,, Si be a closed smooth surfaces and S1 n SZ = @, Di’(i = I, 2) be the 
bounded part of R” with boundary aDi+ = Sf, Di- = RS \ (Dt* IJ S,). Let an eiastic body occupy 
the region D = Dp- n Da+ # 0, and assume that the normal n is directed outward of D. 

Let us consider the problem 

L.u.=O, XED; Tmu.=f, XES 

Here (and similarly below) f = {fl;f”), where p are vector functions defined on Si. 
We seek a solution of the problem 

~~(x)=~,~~V(~,y)p~(y)dYS+ssradlx~-xl-~. xoEDU_S 
1 

Let us determine the matrix operator 

Te={Teij}t T,jq= S T,,V,(~*Y)~'(~*Y)~YS 
SJ 

x E Sj; i, j = 1, 2 

For (PC = (d; Ve2) we have the equation 

(Pi + T,cp, = f - c.Tti grad I x0 - x 1-l 

The following formulas can be verified: 

T, = To f eT,, 11 TI /J <c (is independent of e) 

h'(I + T&v = (0; n}; N (--I + T,*) = (0; q$} 

(--I + T,) L, (S) CON (--I + T,*) 

If we denote by T,I the operator obtained from T, by the substitution Tz,-+ T,, - 
nB(n2, .)&(S& we find that there exists e0 > 0, such that for Ye E- [O, 4 exists the 

bounded operator 

4 =+ [I $ c(- T,)“(--I + T,)j 
k=” 

Further constructions repeat in essence those effected in the case of a simply connected 
surface. 

3. Let S be a closed smooth simply connected surface which divide H" in two regions: the 
finite D+ and infinite D-. 

The difficulty of solving problem l-using the method of integral equations is in that the 
solution is not representable in the form of a double layer potential. It was proposed in /l/ 

to seek the solution in the form of a sum of the simple and double layers potentials of the 
same density. In the computing plan the more convenient is the following method. 

We write 



393 

where ci are unknown constants and $i are, as before, the vectors of rigid displacement. 

For cp, ci we have the equation 

q+T*cp=F:f - 5 v+,.Q (3.1) 
i==l 

(v*$i = 1 v (I7 Y) *i (Y) dlfS) 

Let {cpi (CT))!+ = N (I + T). For the solvability of (3.1) it is necessary and sufficient 

that conditions 
(F, mi) = 0, i = 1, 2, . . ., 6 (3.2) 

are satisfied. These conditions determine ci uniquely. Indeed, since V* cpi =$i, and func- 

tions V(z, y) is symmetric, we have 

(F,mi)=(f,rpi)-~~~lj(rUi,Oj) 

ThUS ~pv Ci that satisfies (3.1) uniquely defines the solution, since by virtue of the 

generalized Gauss theorem 
1 [T,yv (s,~)l $i (Y) d$ ~0, x E D- 
6 

Let us pass from (3.1) to the equation 

'p + T,*cp = F (T,* = T* + Xlli (., $i)) (3.3) 

The following statement is correct (see proof below): 

Z (TX) c 2 (T) I--1) 
The conditions (3.2) and (cp,q,)=O (k = 1,...,5) are equivalent, hence, when one of them 

is satisfied the solution of (3.3) is also the solution of (3.1). This implies that solution 

of (3.3) can be obtained using the NeWJIaM series, since 

RL (I + Tl+)-’ =kgo (- T1*)” 

Proof. Point --1 is a simple pole of the resolvent of operator T* /l/. We shall show 
in the beginning that X(T1*)CZ (I')\(-%). Since the regions of Fredholm properties of operat- 
ors TX* and Tare the same, it is sufficient to consider only the point spectrum. 

Let h,cp be, respectively, the eigenvalue and the eigenfunction of operator ~~9. We 
multiply the equation ?.q- T,*cp= 0 by h. We have h(cp,gr)= 0 hence when h#O we have (rp, 
&) = O (k = 1, 2, . . . . 6) and I (T,*) c Z (I'*). Let -1 E I (T1*), then from @ + T,*@= 0, as proved, 
we have (cpl,$k) = 0 and cp'+ T*@= 0. By the Fredholm theorem from this follows in turn the ex- 
istence of functions ,I? such that p2+ T*p'= '~1, which contradicts the condition of simplic- 
ity of pole 1, since in that case 'p+ is an adjoint function. 

We multiply now (3.1) by (Pk(((p&'=N(I+ T)) and obtain 

i=l 

By virtue of simplicity of pole lvectors '$'pi, qk it can bebiorthonormalized ($i,(Dk)= Oik.Frm 
this follows the statement of second part. 

The algorithm of solution of problem I-comes in the following two stages: 

1) the kalculation of Rf, R (V* cpi), 
2) determination of Ci from the solution of six linear algebraic equations 

The extension to the case when S consists of several simply connected components is 
elementary. 

The method presented here may also be applied in the case when on some surfaces bounding 
the body stresses are specified. 

Let, for example, the body lie between the surfaces S o and S, with S, contained inside 
S, and S,nSl= 0. Repeating the reasoning in /9/ presented there for a similar problem in 

the case of Laplace equations, we obtain a system of equations with the same spectral proper- 
ties. T‘nus, if on S, are given displacements and S, stresses, we obtain an equation at an 
isolated point of the spectrum, with the remaining part of the spectrum lying inside the in- 
terval (-1, I). The eigenfunctions are zero on S O and rigid displacements on S,. Further 
investigations virtually repeat the foregoing. 
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